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LETTER TO THE EDITOR 

Flory theory for the fractal nature of an irreversible kinetic 
gelation in branched polymers 

R B Pandey 
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, 
UK 

Received 4 May 1984 

Abstract. A Flory type theory is presented for a model of kinetic gelation in branched 
polymers. Fractal dimensionality of the gel cluster at the gel point is estimated to be 
D,-[d(4x-d)  +4x]/[4x-d +2] where x is the exponent for the number of monomers; 
this is consistent with the simulation results. It is argued that the growth in irreversible 
gelation is different from that in aggregation. 

Recently, there has been a lot of interest in understanding the various growth processes 
of aggregation (Witten and Sander 1981, 1983, Meakin 1983, Ball and Witten 1984) 
and gelation (Manneville and de Seze 1981, Herrmann 1984 and references therein, 
Pandey 1984). While several theoretical attempts (Ball and Witten 1984, Witten and 
Sander 1983), including mean field arguments (Hentschel 1984), have been made to 
understand the basic features of the diffusion limited aggregation (DLA) models, the 
models of kinetic gelation are comparatively less explored (Herrmann 1984). Using 
computer simulation, Family ( 1983) has studied the self similarities (Mandelbrot 1982, 
Stanley and Coniglio 1983) of the infinite gel clusters at gel points for various radical 
concentrations ci. In the two-dimensional Euclidean lattice, he found that the fractal 
dimensionality of the gel Dkg depends on ci; in the high ci limit it is closer to that of 
the percolation cluster Dperc- 1.89 (Stauffer 1979) and in the small ci limit it is closer 
to that of DLA, DDLA- 1.7. Very recently the Boston University group (private com- 
munications with Stauffer) has ruled out this claim and has shown that the fractal 
dimensionality of the gel cluster is similar to that of percolation for most of the 
concentration ci regime. In this note we introduce simple arguments and develop a 
Flory type thoery (Flory 1971, de Gennes 1979, Isaacson and Lubensky 1980) to 
provide more physical insight into the irreversible kinetic gelation model which suggests 
that kinetic gelation and aggregation are quite different growths. 

The basic idea behind the simplified model considered here is very simple. In 
computer simulation models (Manneville and de Seze 198 1, Herrmann 1984, Pandey 
1984), the lattice sites are first filled by monomers; radicals are then placed on a small 
fraction ci of these sites. Reactions are grown by adding bonds at the trajectories of 
the random walk motion of growth (active) centres; a bond may join two monmers, 
a monomer and a cluster (the macromolecule) and two clusters. The return of the 
random walker (the radicals) to its previously visited sites (monomers) is restricted 
due to restricted functionalities (i.e. the number of bonds by which the site can be 
connected to its neighbouring monomers). The active centres (radicals) can be trapped 
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if all its neighbouring monomers are saturated; when two active centres meet they may 
annihilate each other. There are several variants of this growth model, for example, 
conserving the concentration of radicals (Pandey 1984), constantly increasing the 
concentration of radicals during the reaction growth (Mathews-Morgan and Landau 
1984), etc (some other growths may be found in Pandey (1984)). Increasing the 
functionalities by considering high functional monomers in the sol phase, the restriction 
on return of the random walk mentioned above can be reduced drastically and so is 
the chance of trapping. Furthermore, increasing the functionalities does not change 
the qualitative nature of the phase diagram (Pandey 1984). If one considers the growth 
of kinetic reaction via a small concentration of active centres, then the chances of their 
encounter (and therefore the chances of annihilation) may be reduced. We therefore 
consider the growth of kinetic gelation by growing the bonds at the simple unrestricted 
random walk trajectories of the active centres, using the approximation of neglecting 
the annihilation. 

Let there be N monomers (sites) in the gel network at the gel point; these are the 
number of distinct visited sites say in time t (since a site can be visited more than 
once and therefore a monomer can be connected by more than one bond to its adjacent 
monomer) for which (Montroll and West 1979) 

d = l  

- t / ln  t d = 2  

- t  d = s  with s 2 3  ( 1 )  

where t is approximately a measure of the number of grown bonds. The root mean 
square displacement (end to end distance) is given by 

where N - t X  (x = for d = 1 and x = 1 for d 2 3). One must note that the following 
analysis is valid only for d = 1 and d 2 3, where this simple power law is applicable. 
Since the radius of gyration of the cluster is proportional to the RMS displacement, 
the elastic free energy (entropic contribution) is given by (de Gennes 1979) 

To estimate the repulsive free energy, we recall the history of the growth. The 
whole network is made up of blobs; each blob is a cluster formed by the random walk 
motion of an active centre. Let there be nb blobs. nb is of the order of the number ijf  
active centres in the reaction growth, 

nb - ciRd. (4) 

On average, there are Nb monomers per blob with 

Nb- N / n b -  NR-d/Ci. ( 5 )  

If the radius of gyration of a blob is Rb, then the intrablob repulsion free energy is 
given by 

Fintra - N i l  R,” - N i - d / 2 x  

( 6 )  
- ~ ( 4 x - d ) l Z x  R - d ( 4 x - d  ) / 2 x  
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and the interblob repulsion free energy by 

Finter- nt/( R/ Rb)d - N1/2xRd-d/2x, 

L581 

(7) 

Therefore, the total free energy is 

F = Fe, + C n w a  + Finter, 

(8) 

aF/aR = 0. (9) 

= ~ 2 ~ - 1 / x  + ~ ( 4 x - d ) / 2 x ~ - d ( 4 X - d ) / 2 X  + ~ 1 / 2 X ~ d - d / 2 X  

Now the equilibrium radius of gyration can be estimated from 

Keeping all the terms in the free energy (equation (8)), it is not possible to find a 
closed form expression for the radius of gyration R,. We may, however, analyse the 
contribution of each repulsion term separately. If we neglect the intrablob repulsion 
and consider only the interblob repulsion with the elastic attraction term, then we get 
the results for the radius of gyration R, which do not seem physical. On the other 
hand if we neglect the interblob interaction and consider only the intrablob repulsion, 
then criterion (6) gives 

for (4x - d)  > 0. (10) 

RDr- N, (1 1) 

Df = [d(4x - d )  +4x]/(4x - d +2) (12) 

~ [ d ( 4 x - d ) + 4 X l / Z x  - ~ ( 4 X - d + 2 ) / 2 X  

Using the definition of the fractal dimensionality Df, 

we obtain 
for (4x - d )  > 0. 

This gives Df = 1 for d = 1 and Df ~ 2 . 3  for d = 3. Note that (12) is an approximate 
result, and to find an accurate estimate one has to take into account all relevant 
interactions in appropriate proportions, then, as we have seen above, it is not feasible 
to obtain a closed form expression for Df. 

In d = 2 Euclidean space the situation is very complex because of the logarithmic 
dependence of the number of distinct visited sites (i.e. monomers) in time t (equation 
( I ) ) .  Let us see what can we say about the fractal dimensionality of the gel network 
in this case. We assume an exponent z for the logarithmic dependence of N on t such 
that 

t=Nln ' t=Nln ' (NIn 'NIn '  ...) 

= N In' N (to leading order). (13) 

(14) 

Then the entropic contribution to the free energy may be written as 

Fe, - R2/( N In' N) 

where RRMs - Nil2 ln'l2 N is used. The intrablob free energy may then be obtained 
from (6) and (13), 

Fintram Ni/R,d - N(4-d)/ZRd(d-4)/2 [In ( NR-d)]-'d/Z. (15) 

Note that these relations are valid only for d = 2. As in our previous analysis, the free 
energy F may be obtained by adding (14) and (15). The equilibrium condition (9) 
then gives 

~ ( 4 + 4 d - d = ) / 2  - N(6-df/21n' N[lr1(NR-~)]- '~/~[d(4- d)/2-(zd2/2)(ln( NR-d))-']. (16) 



L582 Letter to the Editor 

One can easily check that, in the absence of logarithmic dependence here, the fractal 
dimensionality Df is equal to 2 and that the logarithmic correction reduces it to 2 - E ,  

where E is a correction. Such a logarithmic correction was noted also in percolation 
studies (Stauffer 1981). Although we are unable to provide a precise value of this 
correction, our crude analysis presented here does give an idea about the fractal nature 
of the gel model. Our results for the fractal dimensions are in qualitative agreement 
with those of computer experiments; these are compared in the table. 

Table 1. Dkg (experiment) are the values from Herrmann et al (1983) and Pandey (1984) 
and Dkg (theory) are from our approximate theory. 

d Dkg (experiment) Dkg (theory) 

I 1 1 
2 I .8 2 -  E 

3 2.5 2.3 

Based on the approximate analysit, the following qualitative picture emerges: the 
gel network is made up of blobs which are interpenetrating each other very strongly, 
while each blob within itself is very repelling. As a result, the network looks less dense 
within the blob and highly dense and crosslinked at their intersections; a qualitative 
picture is shown in figure 1. Thus, in contrast to DLA clusters which are opaque to 
the diffuser, the gel clusters are most likely to be transparent. 

Figure 1. Qualitative picture of a model network. 
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